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Abstract 

The purpose of this research paper is to review some basics of theoretical 

approaches to Heavy-ion fusion reactions at energies around the Coulomb barrier. 

In the parabolic approximation of a barrier the transmission coefficients are given 

by the Hill-Wheeler expression and the cross section is given by the Wong 

formula; this is the so-called uncoupled fusion. The one dimensional model can 

describe the fusion of light systems like 14N+12C, 12C+29Si and 16O+27Al. 

However, it fails to reproduce the experimental data of the excitation function of 

the fusion cross section for heavy systems such as 40Ca+62Ni, 40Ar+144Sm and 
16O+154,148,144Sm. Large enhancements of fusion cross section against predictions 

of the potential model can be caused by the coupling of the relative motion 

between the colliding nuclei to other degrees of freedom, e.g. their intrinsic 

excitations, nuclear transfer and etc. They are called channel-coupling effects. 

These effects can be effectively expressed in terms of distribution of potential 

barriers.  

Keywords: Heavy-ion subbarrier fusion reaction; Penetrability; Nucleus-nucleus  

                    potential; Fusion barrier distribution 

 

1. Introduction 

Fusion is defined as a reaction where two separate nuclei combine 

together to form a composite system. In this contribution, we deal 

with fusion reactions at energies near and below the Coulomb barrier, 

where heavy-ion fusion reactions are governed by quantum tunneling. 

In the study of fusion reactions below the Coulomb barrier created by 

the strong cancellation between the long-range repulsive Coulomb 

force and the short-range attractive nuclear interaction, the 

experimental observables are the cross section and the average angular 

momentum. In general, the compound nucleus formed in heavy-ion 

fusion reaction is highly excited and decays either by emitting 

neutrons, protons, α particles, γ and X rays (which are called particle 

evaporation), or by fission. The dominant decay mode of the 

compound nucleus is particle evaporations for lighter systems (Z < 70, 

Z being the atomic number) and fission for heavy systems (Z > 90). 

Experimentally, the total fusion cross section is then defined by the 
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sum of the fission and the evaporation residue cross sections. 

Therefore, fusion cross sections at low energies are measured by 

detecting evaporation residues or fission products from compound 

nucleus formation. A review of different experimental techniques for 

measuring the fusion cross sections is given by Beckerman (1988). It 

is worthwhile to emphasize that moments of the angular momentum 

distributions, unlike the fusion cross section itself, are not directly 

measurable quantities [3, 1]. 

Theoretically, it has been considered that fusion has been achieved 

once colliding nuclei overcome the Coulomb barrier because of strong 

absorption by nuclear force inside the Coulomb barrier if the charge 

product of the system is less than 1,600.  

The fusion cross section at energy E is equivalent to the transmission 

cross section of the Coulomb barrier given by the standard formula: 

         𝜎𝐹(𝐸) =
𝜋ћ2

2𝜇𝐸
∑ (2𝑙 + 1)𝑙 𝑃𝑙(𝐸),                                                 (1) 

where 𝜇 is the reduced mass of the system and 𝑃𝑙(𝐸) is the barrier 

transmission probability for an angular momentum l. Now the 

important thing in the study of fusion reactions is how to precisely 

estimate the barrier transmission probability.  

In 1973, Wong derived the analytical expressions (1) of fusion cross 

sections if the Coulomb barrier is approximated by a parabolic form 

[2], which is generally called Wong formula. The experiment data 

obtained by Vax, Alexender and Satcher(1981)[3] showed that the 

Wong formula successfully reproduces the observed cross sections for 

fusion of light ions but it fails to reproduce those for heavy ions, 

which showed huge enhancement at energies below the Coulomb 

barrier. This indicates that the Wong formula, which relies on the 

assumption that fusion reaction can be described by the relative 

motion of colliding nuclei and the Coulomb barrier can be 

approximated by a parabolic form, are no longer valid. 

In the next section, we describe the one-dimensional potential model 

which estimates the fusion cross section in terms of the penetrability 

(or the fusion probability) for the 𝑙-wave scattering and approximate 

this penetrability by the uniform WKB approximation. In section (3), 

the simplest potential model with parabolic approximation and Wong 

formula is derived. In section (4), its failures in reproducing the 

observed fusion cross sections for medium weight mass systems, and 

the reasons why a one-dimensional description fails, are demonstrated. 



 
 

In section (5), we present that the effects of channel coupling can be 

expressed in terms of distribution of potential barriers. In this section 

we discuss the transparent behavior of channel coupling by means of a 

schematic two-channel problem with the help of the Wong formula. 

Finally  sect. (6) summaries this contribution. 

 
2. One Dimensional Potential Model 

Theoretically, the simplest approach to heavy-ion fusion reaction is to 

use the one-dimensional potential model where the reaction is 

described only by the relative distance r between the projectile and 

target and both the projectile and the target are assumed to be structure 

less. One of the basic concepts of the nuclear reactions is nucleus-

nucleus potential that is a function of the distance 𝑟 between the centre 

of mass of the target and projectile. It consists of a repulsive Coulomb 

term 𝑉𝐶(𝑟)  and a short ranged attractive nuclear term 𝑉𝑁(𝑟) . The 

nucleus-nucleus potential 𝑉0(𝑟)  can be written as the sum of the 

Coulomb and nuclear potential and centrifugal potential, 

                     𝑉(𝑟) = 𝑉𝑁(𝑟) + 𝑉𝐶(𝑟) + 𝑉𝑙(𝑟).                                   (2) 

Fig. (1) shows a potential 𝑉0(𝑟) for the s-wave scattering of the 16O + 
144Sm reaction. The thicker and the thinner lines are the Coulomb and 

the nuclear potentials, while the total potential 𝑉0(𝑟) is denoted by the 

dotted line. The nuclear potential is usually taken to be of Wood-

Saxon form, 𝑉𝑁(𝑟) = −
𝑉0

1+exp [
𝑟−𝑅0

𝑎
]

 which is defined by three 

parameters: the depth 𝑉0, the radius 𝑅0and the diffuseness 𝑎 [4]. At 

the present time the physical origin of the large value of surface 

diffuseness parameter in the nuclear potential required to fit data is an 

open problem [5]. A potential barrier appears to the compensation 

between the attractive nuclear force and the repulsive Coulomb force 

and is called the Coulomb barrier. Properties of the Coulomb barrier 

are characterized by the Coulomb barrier position 𝑟𝐵 barrier curvature 

𝛺 and barrier height 𝑉𝐵 [6]. In describing fusion, the potential around 

the fusion barrier radius 𝑟𝐵 is most important and the presence of a 

pocket in the nuclear potential allows a simple conceptual criterion for 

fusion. Once the significant density overlapping occurs, a substantial 

loss of kinetic energy and angular momentum occurs from the relative 

motion to nuclear intrinsic degrees of freedom and all the flux passing 

the barrier lead to fusion [7]. The theory of scattering defines the 



 
 

fusion cross section 𝜎𝐹(𝐸) at an energy E and it can be given by a 

summation over all partial waves,  

        𝜎𝐹(𝐸) =
𝜋

𝑘2
∑ (2𝑙 + 1)𝑃𝑙(𝐸)𝑙 ,                                                  (3) 

where 𝑃𝑙(𝐸) is the penetrability or the fusion probability for the 𝑙-

wave scattering and is determined by numerically solving the 

Schrödinger equation for the radial motion. Alternatively, one can 

approximate by the uniform WKB approximation as 

        𝑃𝑙(𝐸) = {1 + 𝑒𝑥𝑝 [2 ∫ 𝑘(𝑟)𝑑𝑟
𝑟1

𝑟2
]}

−1

,                                        (4) 

where 𝑘(𝑟) is the local wave number, and 𝑟2 and 𝑟1are the inner and 

outer classical turning points at the potential barrier. Then the 

parabolic approximation at this barrier will be reviewed in the 

following section. 

 
Fig. 1 ; A typical potential 𝑉0(𝑟)  for the s-wave scattering of the 16O + 144Sm 

reaction as a function of the relative distance between 16O + 144Sm.  

 

3. Parabolic Approximation and Wong Formula 

As was reviewed in the former section, near the barrier top any 

reasonable potential can be approximated by a parabola 

           𝑉0(𝑟) = 𝑉𝐵 −
1

2
𝜇2𝛺2(𝑟 − 𝑟𝐵)2 .                                               (5) 

Then the penetrability 

        𝑃𝑙(𝐸) = {1 + 𝑒𝑥𝑝 [
2𝜋

ћ𝛺𝑙
(𝑉𝐵 − 𝐸)]}

−1

    ,                                     (6) 

can be analytically evaluated in Eq. (3). In the nuclear physics 

literature, Eq. (6) is known as the Hill-Wheeler formula. 𝑉𝐵 and 𝛺𝑙 are 
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the height and the curvature of the fusion barrier for the partial wave 𝑙, 
respectively. In Fig. (2) the Coulomb barrier for the s-wave scattering 

of 16O+144Sm reaction is compared with the parabolic potential. 

Akyüz-Winther potential is used for the nuclear potential. The 

curvature, barrier height and barrier position of this potential are 4.25 

MeV, 61.24 MeV and 10.81 fm respectively. Because of the long 

ranged Coulomb interaction, the parabolic potential has less width 

compared with the realistic situation. Fig. (3) compares the 

penetrability of the s-wave scattering obtained by numerically solving 

the Schr 𝑜̈ dinger equation with that obtained in the parabolic 

approximation. Although the parabolic approximation overestimates 

the agreement between the exact solution and the approximation is 

remarkable, especially at energies above the Coulomb barrier. Using 

the parabolic approximation, Wong has derived an analytic expression 

of fusion cross sections. He assumed that (i) the curvature of the 

Coulomb barrier is independent of the angular momentum 𝑙, and (ii) 

the dependence of the penetrability on the angular momentum can be 

well approximated by the shift of the incident energy as  

         𝑃𝑙(𝐸) = 𝑃0 (𝐸 −
𝑙(𝑙+1)ћ2

2𝜇𝑟𝐵
2 ).                                                         (7) 

If many partial waves contributed to fusion cross section, the sum in 

Eq. (3) can be replaced by an integral;  

          𝜎𝐹(𝐸) =
𝜋

𝑘2 ∫ 𝑑𝑙(2𝑙 + 1)
∞

0
𝑃𝑙(𝐸).                                              (8) 

Ignoring the 𝑙 dependence of curvature 𝛺  and barrier position 𝑟𝐵, one 

can obtain following Wong formula; 

                                       𝜎(𝐸) =
ћ𝛺

2𝐸
𝑟𝐵

2𝐿𝑜𝑔 [1 + 𝑒𝑥𝑝 (
2𝜋

ћ𝛺
(𝐸 − 𝑉𝐵))].            (9) 
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Fig. 2 ; Comparison between the Coulomb barrier for the 16O+144Sm reaction (the 

solid line) and a parabolic potential (the dotted line).  

 



 
 

 
 

One can find that the fusion cross section is determined by three 

parameters; the barrier height 𝑉𝐵 , the barrier radius 𝑟𝐵 and the 

curvature  𝛺𝐵 . At high energies above the Coulomb barrier, the 

exponential in the argument of the logarithm in expression (9) is much 

larger than unity. This formula gives the classical expressions, 

       𝜎(𝐸) = 𝜋𝑟𝐵
2 (1 −

𝑉𝐵

𝐸
) for 𝐸 > 𝑉𝐵 ,                                            (10) 

while at low energies, the exponential term is small, then 

       𝜎(𝐸) ≈ 𝑟𝐵
2 ћ𝛺

2𝐸
𝑒𝑥𝑝 (

2𝜋

ћ𝛺
(𝐸 − 𝑉𝐵)) for 𝐸 < 𝑉𝐵 .                           (11) 

Fig. (4) shows the comparison of fusion cross section for the 
16O+144Sm reaction obtained by the Wong formula with exact 

numerical solutions. One can observe that the Wong formula works 

very well except below the Coulomb barrier where the parabolic 

approximation break down.  

 
Fig. 4 ; The comparison of fusion excitation functions of the 16O+144Sm reaction. 
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4. Comparison with Experimental Data; Failure of the Potential 

Model 

We now review the comparison of experimental excitation functions 

of fusion cross section for several systems with predictions of the one 

dimensional potential model (Wong formula). In Fig. (5) taken from 

Vaz et al. [1], the solid lines are predictions of the potential model 

obtained by using the parabolic approximation. One can find that the 

potential model reproduces the experimental data very well for 

relatively light systems, i.e. the 14N+12C, 16O+27Al and 12C+29Si 

reactions. However, this is no longer so in the case of heavier systems 

where the cross section at sub barrier energies are significantly larger 

than the one dimensional model. Fig. (6) shows the experimental 

fusion excitation function for the 16O+144,148,154Sm reactions and 

comparisons with the potential model (the solid lines). These are 

plotted as functions of the difference between the centre of mass 

energy and the barrier height for each reaction. The barrier height and 

the result of the potential model are obtained by using the Akyüz-

Winther potential [8]. We again observe that the experimental fusion 

cross sections drastically enhance compared with the predictions of 

the potential model. Moreover, we observe that the degree of 

enhancement of fusion cross section depends strongly on the target 

nucleus. The enhancement for the 16O+154Sm system is order of 

magnitude while that for the 16O+144Sm system is about factor four at 

energies below the Coulomb barrier.  

These discrepancies were not due to the use of wrong of potential 

rather the assumption of the one dimensional model is not adequate 

for heavier systems. The inadequacy of the potential model was 

demonstrated in the inversion formula of experimental data applied by 

Balantekin et al., where the shape of the potential barrier is obtained 

by the penetrability deduced from experimental fusion cross sections 

[3]. They show that there are the limitations of the simple model. A 

more microscopic description would need to understand the physical 

effect. The reason for this failure is that an increasing number of 

inelastic channels have to be taken into account for heavier systems. 

This will be reviewed in the following. 
 



 
 

 
Fig. 5 ; Comparison of experimental excitation functions of fusion cross section for 

several systems with predictions of the potential model (the solid lines).  

 
Fig. 6 ; The experimental fusion excitation function for 16O+144,148,154Sm reactions. 

 

5. Coupled-Channel Effects and Barrier Distribution Concepts 

Extensive experimental as well as theoretical studies have revealed 

that the inadequacy of the potential model i.e. large enhancements of 

fusion cross section against predictions of the potential model can be 

caused by the coupling of the relative motion between the colliding 

nuclei to other degrees of freedom, e.g. their intrinsic excitations, 



 
 

nuclear transfer. They are called channel-coupling effects [9]. As two 

fusing nuclei approach each other, they will in general undergo 

transitions from the ground states to excited states and transfer 

particles between themselves, before coming close enough to form a 

compound nucleus. The elastic channel couples to inelastic channels 

and the transmissions across the barrier takes place in each of these 

channels. The incoming wave splits up into various inelastic waves 

with different transmission probabilities. In order to obtain the total 

transmission into the interior of the compound system, these different 

transmission probabilities have to be combined. On the other hand, the 

interactions which are responsible for the coupling also contribute to 

the effective barriers in the various channels. This leads to an 

enhancement of the transmission coefficient [2]. 

Many people in this field are usually solving the Couple-Channels 

calculation which is a standard theoretical approach to describe heavy-

ion fusion reaction by taking the effects of nuclear intrinsic degree of 

freedom into account. In the earlier fusion, simplified Couple-Channel 

codes such as CCFUS, CCDEF and CCMOD were widely used. 

Currently newer codes are available to experimentalists, such as 

CCFULL. 

The large enhancement of the fusion cross section, and also the strong 

isotope dependence, are caused by the coupling of the relative motion 

between the projectile and target to their intrinsic degrees of freedom. 

The effects of channel coupling can be expressed in terms of the 

distribution of potential barriers when the excitation energy of the 

intrinsic motion is zero, and the underlying structure of the barrier 

distribution can be detected by taking the first derivative of 

penetrability. For a completely classical system, we can see in Fig. 

(7.a) that 𝑃0 penetrability is unity above the barrier and zero below; 

hence d𝑃0/d 𝐸 is a delta function peaked when 𝐸 is equal to the barrier 

height. Quantum mechanically this sharp peak is broadened as the 

transmission probability smoothly changes from zero in Fig. (7.b). 

Rowley et al. suggested that if many channels are coupled to the 

relative motion, the quantity d𝑃0/d 𝐸 is further broadened and can be 

taken to represent the “distribution of the barriers”.  

In the problem of heavy-ion fusion reaction, the experimental 

observable is not penetrability, but fusion cross section, and thus if 

one intend to discuss the effects of channel-coupling on fusion in 

terms of the first derivative of penetrability, one has to convert fusion 



 
 

cross sections to penetrability’s of the s-wave scattering. The Wong 

formula given by Eq. (9) suggests one prescription for this, i.e. it 

suggests that the first derivative of the product of fusion cross section 

𝜎𝑓  and the centre of mass energy 𝐸  with respect to the energy, 

d(𝐸σ)/d 𝐸 , is proportional to the penetrability of the s-wave scattering 

          
𝑑(𝐸𝜎)

𝑑𝐸
=

𝜋𝑟𝐵
2

1+𝑒𝑥𝑝[−
2𝜋

ћ𝛺
(𝐸−𝑉𝐵)]

= 𝜋𝑟𝐵
2𝑃0(𝐸).                                   (12) 

This equation immediately leads to a relation between the first 

derivative of the penetrability and the fusion cross section  

          
𝑑2(𝐸𝜎)

𝑑𝐸2 = 𝜋𝑟𝐵
2 2𝜋

ћ𝛺

𝑒𝑥𝑝[
2𝜋

ћ𝛺
(𝐸−𝑉𝐵)]

{1+𝑒𝑥𝑝[
2𝜋

ћ𝛺
(𝐸−𝑉𝐵]}

= 𝜋𝑟𝐵
2 𝑑𝑃0(𝐸)

𝑑𝐸
   .                   (13) 

This quantity, which is conventionally called fusion barrier 

distribution, is peaked at the height of Coulomb barrier for the s-wave 

scattering 𝑉𝐵.  



 
 

 
Fig. 7.a  ; Classically 

Fig. 7 ; Classical (7.a) and quantum mechanical (7.b) transmission probabilities and 

their first derivatives for a one dimensional potential barrier in typically. 

 

We can also check how the first derivative of 𝐸𝜎𝐹  describes the         

s-wave penetrability as follows; firstly, Fig. (8.a) shows the product of 

fusion cross section 𝜎𝑓 and the centre of mass energy 𝐸 with using the 

Wong formula and without it. Then Fig. (8.b) compares the first 

derivative d(𝐸𝜎𝐹)/dE obtained by numerically solving the Schrödinger 

equation without using the Wong formula with numerical solution of 

the s-wave penetrability. The internal excitations of both the projectile 

and the target nuclei are not taken into account. Although d2𝐸𝜎𝐹/d 𝐸2 

decrease at high energies while 𝜋𝑟𝐵
2𝑃0 become close to one, Fig.(8.c) 

     

 

Fig. 7.b  ; Quantum mechanically 

 



 
 

shows a comparison between the second derivative of 𝐸𝜎𝑓  and the 

first derivative of penetrability d𝑃0/d 𝐸 which is scaled by 𝜋𝑟𝐵
2 .  
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The various effects of channel coupling on barrier penetration within a 

simple model have been illustrated by Dasso et al(1983)[4].The 

transparent behavior of channel coupling will be studied in a 

schematic two-channel problem with the help of the Wong formula. 

Due to the effect of the two channel coupling, the bare potential 

𝑉0(𝑟)(dotted line) splits into two eigen-barriers 𝑉0(𝑟)+|𝐹(𝑟)|(upper 

solid line) and 𝑉0(𝑟)-|𝐹(𝑟)|(lower solid line) which are higher and 
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lower than the bare potential in Fig. (9). In this application we use 

gaussian shape for both the bare potential and the coupling form factor 

         𝑉0(𝑟) = 𝑉0𝑒
−𝑟2

2𝑠2⁄
 and 𝐹0(𝑟) = 𝐹0𝑒

−𝑟2

2𝑠𝑓
2⁄
,                 (14) 

in which 𝑉0=100MeV, 𝐹0=3MeV and 𝑠= 𝑠𝑓  =3fm, respectively. The 

penetrabilities of the effective potential 𝑉0  (r)±  𝐹(𝑟)  are given by 

         𝑃+ =
1

1+𝑒𝑥𝑝[−
2𝜋

ℏ
(𝐸−𝑉𝐵+𝐹0)]

 and  𝑃− =
1

1+𝑒𝑥𝑝[−
2𝜋

ℏ
(𝐸−𝑉𝐵−𝐹0)]

,      (15) 

where form factor 𝐹0 is assumed about 3MeV. The curvature Ω and 

the bare potential height 𝑉𝐵are chosen in 16O+144Sm reaction [1].The 

total barrier penetrability is given by  

                    𝑃(𝐸) =
1

2
[𝑃+ + 𝑃−].                                                     (16) 

 Fig. (10) illustrates the penetrability in this model as a function of 

energy. The solid and dashed curves are calculated with and without 

coupling between the channels. The penetrability is on the left and 

fusion barrier distributions are on the right. The `
𝑑𝑃0(𝐸)

𝑑𝐸
 splits into two 

peaks and the peak positions of  
𝑑𝑃0(𝐸)

𝑑𝐸
 correspond to each barrier 

height. Because of the channel coupling we can see that the 

penetrability is decreased at energies above the barrier 𝑉𝐵 whereas it is 

enhanced at energies below 𝑉𝐵.  Consequently the fusion cross section 

is enhanced at energies below the barrier, and reduced above the 

barrier [2]. These observations explain why the channel coupling 

enhances the fusion cross section at energies below the original 

potential barrier. Then the one dimensional potential model have 

neglected this barrier distribution and assumed only bare potential. So 

it failed.  

 
Fig. 10 ; Penetrability functions in the two-channel problem estimated by using 

Wong formula.  
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6. Summary 

In this contribution we have discussed some aspects of the studies of 

heavy-ion fusion at energies around the Coulomb barrier. We have 

shown that the fusion cross section is significantly enhanced 

compared with the prediction of a one-dimensional potential model 

and has a strong isotope dependence. Inclusion of coupled channels 

can take into account distortions of the nuclei due to the strong forces 

acting on them near the barrier. A very important recent progress is to 

obtain detailed information of nuclear structure and excitations from 

fusion data, especially through the so-called fusion barrier distribution 

analysis. We have demonstrated analytically within the two channel 

problem that the coupling acts to enhance fusion cross section at 

energies below the barrier. We have argued that heavy-ion fusion 

reaction can be a powerful tool to probe details of nuclear deformation 

and nuclear intrinsic excitation. 
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